Get Response
Note: Use the python template to append user and assistant messages to the conversation object
Python Quickstart
import requests
import json
# Define a sample business utility function: Book Tickets
def book_tickets():
"""
Sample business utility function to demonstrate booking tickets.
Replace this with your actual booking tickets logic.
"""
print("Booking Tickets...")
# Your booking tickets logic here
print("Tickets Booked Successfully.")
# Define a sample business utility function: Pay Bills
def pay_bills():
"""
Sample business utility function to demonstrate paying bills.
Replace this with your actual bill payment logic.
"""
print("Paying Bills...")
# Your bill payment logic here
print("Bills Paid Successfully.")
# Define a function to execute your business-utility functions
def execute_function(function_name):
"""
Executes a user-defined business utility function by its name if it exists in the global scope.
Args:
function_name (str): The name of the business utility function to be executed.
Returns:
None
"""
if function_name in globals() and callable(globals()[function_name]):
globals()[function_name]()
else:
print(f"Business utility function '{function_name}' not found or not callable.")
# Define a function to extract adjusted similarity values and related content
def extract_adjusted_similarity_values(s):
"""
Extracts adjusted similarity values and related business content from a string.
Args:
s (str): The input string containing adjusted similarity values and business content.
Returns:
list: A list of dictionaries containing adjusted similarity and business content.
"""
results = []
start = 0
while True:
start = s.find('"adjusted_similarity":', start)
if start == -1:
break
start_value = start + len('"adjusted_similarity":')
end_value = s.find(',', start_value)
adjusted_similarity = float(s[start_value:end_value].strip())
start_output = s.find('"output":"', end_value) + len('"output":"')
end_output = s.find('"}', start_output) if s[start_output - 2] != ']' else s.find('"}]', start_output)
output = s[start_output:end_output].strip()
results.append({"adjusted_similarity": adjusted_similarity, "business_content": output})
start = end_value
return results
# Specify the id of your trained transformer
transformer_id = "2"
# Action can either be PrefrontalCortex or Amygdala
action = "PrefrontalCortex"
user_message = input("Enter your message: ")
print("You entered:", user_message)
# Construct the conversation array
conversation = [
{"content": "You are a really helpful assistant", "role": "system"},
{"content": "Hey there, how can I assist you today?", "role": "assistant"},
{"content": user_message, "role": "user"}
]
# Prepare the request body
request_body = {
"conversation": conversation,
"action": action,
"transformer_id": transformer_id
}
# Endpoint URL
url = "https://ai.wiom.in/process_rgwai"
# Make the POST request
response = requests.post(url, json=request_body)
# Process and print the modified response
modified_response = response.text.replace('\\', '')
if modified_response.startswith('"') and modified_response.endswith('"'):
modified_response = modified_response[1:-1]
# Extract Amygdala and Prefrontal Cortex results
start_amygdala = modified_response.find('"amygdala_result":"') + len('"amygdala_result":"')
end_amygdala = modified_response.find(']"', start_amygdala) + 1
amygdala_result_raw = modified_response[start_amygdala:end_amygdala]
start_prefrontal = modified_response.find('"prefrontal_cortex_result":"') + len('"prefrontal_cortex_result":"')
end_prefrontal = modified_response.find('}"', start_prefrontal) + 1
prefrontal_cortex_result_raw = modified_response[start_prefrontal:end_prefrontal]
# Process Amygdala results and execute relevant business actions
amygdala_result = json.loads(amygdala_result_raw)
for result in amygdala_result:
if result["adjusted_similarity"] > 60.0:
function_name = result["output"]
print(f"Amygdala Adjusted Similarity: {result['adjusted_similarity']}", f"Business Action: {function_name}")
print()
execute_function(function_name)
# Process Prefrontal Cortex results
extracted_results = extract_adjusted_similarity_values(prefrontal_cortex_result_raw)
# Find the item with the highest adjusted similarity
highest_similarity_item = max(extracted_results, key=lambda x: x["adjusted_similarity"])
print()
# Print the adjusted similarity and business content with the highest relevance
print("Highest Adjusted Similarity:", highest_similarity_item["adjusted_similarity"])
print("Relevant Business Content:", highest_similarity_item["business_content"])
# What next? ... depending on business requirements, you can choose to use Amygdala and Prefrontal Cortex results in isolation or cumulatively, and even make their usage contingent on a minimum similarity score.